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The synapse: transfer of information
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The synapse: transfer of information

Presynaptic action potential (APpre)
Galing Ca™-channels 0.3ms
Ca2* current (Ica)

Ca™-tiggered 0.5 ms
fusion pore opening

Exocytosis (plotted as release rate)

o postsynaptic receplors
Evoked postsynaptic current (EPSC)

Meurotransmitter binding l 0.4 ms

Summation of EPSCs 0.1 ms
triggers action potential

Postsynaptic action potential (APpost)

__Release
probability

__ Response
probability




The synapse

Glial cell ~Axon Postsynaptic
terminal neuron




The miniature postsynaptic response (or ‘mini’)
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Mumbe- of events

10 20
Amplitude (pA)

Fatt and Katz, 1952

- Remain in the presence of TTX
- Prolonged by blockers of acetylcholine esterase
- Blocked by AChR antagonists



Quantal nature of neurotransmitter release

Mumber of events
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Del Castillo and Katz, 1954



Quantal nature of neurotransmitter release
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Quantal nature of neurotransmitter release

Freeze fracture: vesicles caught in the act

Heuser and Reese, 1981



Distinct vesicle pools

@ Rapidly releasable pool
@ Reserve Pool
@ Resting Pool



The presynaptic vesicle cycle




Synaptobrevin ;
SNAP25 Vii1a e Synaptotagmin
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Calcium Dependence of Neurotransmitter release

4- No calcium

3- A little more calcium

2- A little calcium

1- No calcium

Katz



Caged-calcium experiments

Calyx of Held Laser flash

\ [Ca*] transient
“ J
‘Caged’ o o
calcium
EPSC



Dependence of Neurotransmitter release on [Ca%*];,
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Schneggenberger and Neher, nature 2000



Calcium nanodomains

At 200 nm distance:

[Ca**] = 5-10 uM

Rises and falls in = 10 msec

Is at equilibrium with mobile
buffers

Strongly dependent on buffers;
EGTA as effective as BAPTA
[Ca**] determined by mean
activity of several neighbouring
channels

At 20 nm distance:

1.) [Ca*™*] =100 uM

2.) Rises and falls within usec

3.) Is not at equilibrium with mobile
buffers

) Almost independent of Ca-buffers;
EGTA totally ineffective

) [Ca**] predominantly determined
by the local channel

(O BN AN

Neher, CONB, 1998






Postsynaptic structures




Why spines?

1- Increase surface area to optimize packing of many synapses
2- Serve as a separate electrical unit that modulates synaptic signals

3- Provide a biochemical compartment that restricts mobility of molecules



Postsynaptic structure

Spines: occur at around 1-10 per um of dendrite



Synapse diversity: postsynaptic spine
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Arellano et al., 2007 Matsuzaki et al., 2001



Postsynaptic structure: spines

recovery, T -
—_—r fluorescence

time

bleaching
—

Nimchinsky et al., ARN, 2002



Postsynaptic spine shape

J |
( =« Dendrite O 500 MQ spine-neck resistance

b 50 MQ spine-neck resistance
P 2mV |_

_’\ 10 mis
[ [—
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Synapse on spine Synapse on dendrite  Synapse on spine Synapse on dendrite

R.eck = pL/A, where L is length of neck and A is cross-sectional area
and p is resistivity of cytoplasm



Spine neck can filter synaptic events

Peak Amplitude (mV) O

0.0 0.5 1.0 1.5 2.0
Neck Length (um)

Araya et al., PNAS, 2006



Postsynaptic spine shape: calcium diffusion

Small spine Large spine

Noguchi et al., Neuron, 2005



Molecular architecture of excitatory synapses
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Glutamate-gated channels

Extracellular

‘_é - 5 -
AP2/NSF
Binding
Domain
PDZ Binding
Domain_ )

Intracellular C

GluR1-4: Tetramers mostly of GluR2
and two others.

Flip/flop: alternative splice variants
Q/R editing: calcium permeability

Almost all GIuR2 subunits are in the
R form, which is Ca2* impermeable.

NMDAR

\slg:::jon Extracellular

GIuN1-2: Tetramers of GIuN1
(obligatory) and GluN2 A-D.

Calcium permeabile.
Co-agonist: glycine.

Blocked by Mg?* at rest.

MGIuRs

N-terminus Ligand Extracellular
Binding

Intracellular C-terminus

3 groups based on pharmacology
Sequence and signalling.

Group 1: mGlu1 and 5.
Group 2: mGlu2 and 3.
Group 3: mGlu4, 6, 7 and 8.



AMPA and NMDA currents

A Non-NMDA

Closed Open (+ Glutamate)

Na* Transmitter
Fleceptor (Glutamate)™~~_ _ Na*

B NMDA

Closed Blocked (+ Glutamate) Open (+ Glutamate + depolarization)

Na* Ca2+

K+

Copyright @ 2002, Elsevier Science (USA). All rights reserved.



The EPSP: carried mainly by AMPA receptors

Inject even more
current !

Inject more current

Inject current to

depolarise to -20mV

Normal situation
recording V,

Postsynaptic

+20 mV —V

omV

membrane _g5 mV __/\

Na* no mvt
K* out

No ion movement

Less Nat in

Nat* in
K* out

No ion movement at the EPSP’s reversal potential



Glutamate postsynaptic currents

A Early and late components of synaptic current

Peak current
/4 i Late current

NMDA-receptor
component

Membrane S 7
potential

+20 mV

-40 mV

APV

B Current-voltage relationship of
the synaptic current

PA

Late current
remaining after
blockade with APV

-150

Late current
(NMDA receptors)

A

/\ Peak (early) current

- =100

+ -200

(non-NMDA receptors)

-~ =300



GABA, receptors

neurosteroids
barbiturates

One of the two
! Asn267
GABA sites (etomidate action) C
GABA
o B
B -
12 GABA +
o enhancing drug
Phe77

His101
(benzodiazepine site)



The IPSP
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Plasticity of synapses and transmission: mechanisms



Short Term Plasticity: heterogeneous responses to spike trains
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Short Term Plasticity: heterogeneous responses to spike trains

Ba EPSCs in cerebellar Purkinje cell:
climbing fibre
Y Paralel fibre
Purkinje
cell
parallel fibre
Granule?‘i OANNAANA /7~
cell _\ )'
Climbing
fibre -3
=
Mossy
fibre oms

Bb O—( A )_o
Y e

100 ms

Inhibitory interneurons innervating
neocortical pyramidal neuron

Different presynaptic neurons, same target



Mechanisms: Possible Sites for Modulation

Figure 4 Sites of regulation of short-term synaptic plasticity. (1) AP waveform,

2) Ca’t channel activation, (3) facilitation trigger and the readily releasable pool, (4)
residual [Ca*t];. (5) reserve pool, (6) metabotropic autoreceptors, (7) ionotropic autore-
ceptors, (8) Ca’T-ATPase. regulating residual [Ca’*]; in augmentation. (9) mitochon-
drial regulation of residual [Ca®T]; in PTP, (10) postsynaptic receptor desensitization.

Annu. Bev Physiol. 2002, 64:355-405



Width of an Action Potential

mfb Granule cell
Voltage
commands
Synaptic W\ -
currents -

Geiger and Jonas, Neuron, 2000



Types of short-term plasticity

A Short-lived depression B Long-lived depression
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Facilitation at Granule to Purkinje Synapse

0 200 400 600
At (ms)



Facilitation and Residual Calcium

A Residual calcium hypothesis

ﬂ - Large Ca,
Caypeal - Small Ca,
] k
EPSC
10 msec

Could use slow buffer (eg: EGTA) to ‘mop up’ residual calcium



Facilitation and Residual Calcium

Facilitation (%)

Facilitation (%)

0.1% DMSO

.
.
..

20 uM EGTA

.............. o
R .
3 O
T 1
0 500 1000
At (msec)

Process: high affinity, slow off rate

Facilitation (%)

Facilitation {%)

1 uM EGTA

500 1000
At (msec)

Alturi and Regehr, J. Neurosci., 1996



Plasticity of synapses and transmission: mechanisms and functional relevance
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successfully drive
postsynaptic cell

. [

Strengthening of é}ﬁ '

synapses that 0 )
—

drive the postsynaptic neuron to fire.

These cells tend to fire synchronously. 3 m m 9
Because they fire together, they tend to

Loss of im(fcctiw:> @— ......

inputs

These cells tend to fire at random, out of <
synchrony with one another. They rarely @}ﬂ
cause the postsynaptic neuron to fire. &

Postsynaptic
cell

THE MIND’S MACHINE 2e, Figure 13.23
© 2016 Sinauer Associates, Inc.

The Organisation of Behaviour (1949) When an axon of cell A is near enough to
excite cell B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A's
efficiency, as one of the cells firing B, is increased.[3]

This is often paraphrased as "Neurons that fire together wire together." It is
commonly referred to as Hebb's Law.
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The Organisation of Behaviour (1949) When an axon of cell A is near enough to
excite cell B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A's
efficiency, as one of the cells firing B, is increased.[3]

This is often paraphrased as "Neurons that fire together wire together." It is
commonly referred to as Hebb's Law.



STDP rule (spike-timing-dependent
plasticity)

* |f the presynaptic spike arrives at the
postsynaptic neuron before the postsynaptic
neuron fires—for example, it causes the
firing—the synapse is potentiated.
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MicroNetwork Motifs

A. Feedforward excitation D. Lateral inhibition

. '. ( "" ——dq Excitation
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B. Feedforward inhibition E. Feedback/Recurrent inhibition F. Feedback/Recurrent excitation
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